	Notes
Rubin Causal Model	
Charlie Gibbons University of California, Berkeley	
ARE 210	
Fall 2015	
Outline	Notes
Potential outcomes framework	
DefinitionSUTVA	
■ Random assignment of treatment ■ Conditional independence	
2 References	
C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 2 / 12	
Potential outcomes framework	Notes
There are two possible outcomes: $Y_i(1)$ if individual i undergoes treatment T and $Y_i(0)$ if he does not. These are not random.	
T_i is an indicator of treatment status. The treatment effect for i is $\tau_i = Y_i(1) - Y_i(0)$. Hence,	
$Y_i = (1 - T_i)Y_i(0) + T_iY_i(1) = Y_i(0) + T_i\tau_i.$	
τ_i varies across individuals, giving it a distribution in the population, even though it is fixed for an individual.	
Treatment status is a random variable.	

C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 3 / 12

Fundamental problem of causal inference	Notes	
Why not just estimate τ_i directly? We only observe either $Y_i(0)$ or $Y_i(1)$, not both. This is the fundamental problem of causal inference.		
At its core, causal inference is a missing data problem.		
The tes core, causal inference is a mussing wave provient.		
C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 4 / 12		
SUTVA	Notes	
We have already made an important assumption: observation i 's outcome only depends upon his treatment status—not anyone else's.		
This rules out:		
 General equilibrium effects (doubling one person's income while keeping everyone else's the same versus doubling everyone's income) 		
■ Interaction effects/network effects/spill-overs/externalities (not vaccinating one person when everyone else is vaccinated versus the opposite)		
This is known as the stable unit treatment value assumption (SUTVA).		
C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 5 / 12		
Treatment effects	Notes	
The two main effects of interest are the average treatment effect (ATE) and the average treatment effect for the treated (ATT):		
$\text{ATE} = \mathbb{E}(\tau_i)$		
$ ext{ATT} = \mathbb{E}(au_i \underbrace{T_i = 1}_{ ext{Distribution of treated}})$ $= \mathbb{E}_1(au_i)$		
Why are these different? Selection into treatment. These effects are		
often conditioned on a set of predictors X : $\operatorname{ATE}(x) = \mathbb{E}(\tau_i X=x)$		
$ATT(x) = \mathbb{E}_1(\tau_i X = x)$		

Under treatment independence	Notes	
Suppose that treatment is randomly assigned:		
$(Y_i(0), Y_i(1)) \perp T_i.$		
Then:		
$\mathbb{E}_1[\tau_i] = \int \tau f(\tau \mid T=1) \ d\tau$		
$= \int_{\mathbb{R}^n} \tau f(\tau) d\tau$		
$= \mathbb{E}[\tau_i];$		
the ATT = ATE.		
C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 $7/12$		
Conditional expectations	Notes	
Similarly, we can show that:		
$\mathbb{E}_0(Y) = \mathbb{E}_0\left[(1 - T_i) Y_i(0) + T_i Y_i(1) \right]$		
$= \mathbb{E}_0\left[Y_i(0)\right] = \mathbb{E}\left[Y_i(0)\right]$		
and:		
$\mathbb{E}_{1}[Y] = \mathbb{E}_{1}[(1 - T_{i})Y_{i}(0) + T_{i}Y_{i}(1)]$ = $\mathbb{E}_{1}[Y_{i}(1)] = \mathbb{E}[Y_{i}(1)].$		
Hence:		
$\begin{aligned} \text{ATE} &= \text{ATT} = \mathbb{E}\left[\left. Y_i(1) - Y_i(0) \right] = \mathbb{E}\left[\left. Y_i(1) \right] - \mathbb{E}\left[\left. Y_i(0) \right] \right. \\ &= \mathbb{E}_1\left[\left. Y_i(1) \right] - \mathbb{E}_0\left[\left. Y_i(0) \right] \right. \end{aligned}$		
C. Gibbons (ARE 210) Rubin Causal Model Fall 2015 8 / 12		
Overcoming the fundamental problem	Notes	
	INDEES	
$\text{ATE} = \text{ATT} = \mathbb{E}_1 \left[Y_i(1) \right] - \mathbb{E}_0 \left[Y_i(0) \right]$		
Random assignment allows us to use the control observations to fill in the missing outcomes for the treated observations (on average).		

Under treatment independence

C. Gibbons (ARE 210)

Rubin Causal Model

Fall 2015 9 / 12

Under conditional	independence		Notes	
How can this problem be solved in the absence of random treatment assignment?				
We need the assumption observables:	on of unconfoundedness or see	lection on		
ooservaoies.	$(Y_i(0), Y_i(1)) \perp T_i X_i.$			
C. Gibbons (ARE 210)	Rubin Causal Model	Fall 2015 10 / 12		
Confirmation of pr	evious results		Notes	
We can extend the pre-	evious results conditional on 2	<i>Y</i> :	Notes	
ATE(x) = A	$ATT(x) = \mathbb{E}_1 [Y X = x] - \mathbb{E}_0 [$	Y X=x		
Hence, to find ATT (x) , find the average value of Y for those members of the treated group with $X = x$ and subtract it from the average Y for the control population with $X = x$.				
We can use several different approaches to estimate this quantity.		this quantity.		
C. Gibbons (ARE 210)	Rubin Causal Model	Fall 2015 11 / 12		
RCM and identific	ation strategies		Notes	
Randomized studies (also natural experiments and matching): Rubin, Donald B. 1974. "Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies." Journal of Educational Psychology. 66: 688–701. Instrumental variables: Angrist, Joshua D., Guido W. Imbens and Donald B. Rubin. 1996. "Identification of Causal Effects Using Instrumental Variables." Journal of the American Statistical Association. 91(434): 444-455.		reatments in		
Regression discontinuity: Lee, David S. 2008. "Randomized Experiments from Non-random Selection in U.S. House Elections." <i>Journal of Econometrics</i> . 142(2): 675–697.				
Difference-in-differences: Abadie, Alberto. 2005. "Semiparametric Difference-in-Differences		ifferences		
Estimators." Review of Economic Studies. 72: 1–19.				

C. Gibbons (ARE 210)

Rubin Causal Model

Fall 2015 12 / 12